冀健龙

职称:副院长/教授/博导

主要研究方向:微纳器件与系统,包括:神经形态芯片,微纳传感器,智能微系统,自主机器人

Email:jijianlong@tyut.edu.cn

基本信息:冀健龙,男,工学博士,副院长,教授、博士生导师。

研究方向:微纳器件与系统

教育背景及工作经历:

【学习经历】

2010.09-2014.07   太原理工大学(清华联培),工学博士。

2007.09-2010.07   太原理工大学,工学硕士。

2003.09-2007.07   太原理工大学,工学学士。

【工作经历】

2024.10至今           太原理工大学,集成电路学院,副院长。

2022.12-2024.02   忻州经济开发区管理委员会,副主任(挂职)。

2021.09-2022.07   清华大学,访问学者。

2018.01-2019.01   北卡罗来纳州立大学,访问学者。

2014.07至今          太原理工大学,集成电路学院,教师。

学术兼职:

1. 中国仪器仪表学会微纳器件与系统技术分会委员

2. 中国微米纳米学会青年工作委员会委员

3. IEEE Nanotechnology Magazine客座编辑

4. IEEE NMDC 2025, Associate editor for the special session

5. Journal of Micromechanics and Microengineering客座编辑

6. 《微纳电子技术》青年编委

7. 全国大学生嵌入式芯片与系统设计竞赛指委


荣誉获奖:

荣誉称号

 1. 山西省青年拔尖人才

 2.“三晋英才”支持计划青年优秀人才

科研获奖

1. 山西省自然科学一等奖

2. 山西省自然科学二等奖

【人才培养】

 1. 特优毕业论文指导教师

 2. 省级优秀硕士论文指导教师

 3. 中国工商银行奖学奖教金获得者


科研项目及科研成果

主持课题

    【国家自然项目】

国家自然科学基金面上项目(项目批准号:52175542)、国家自然科学基金青年科学基金(项目批准号:51705354)

    【省部级项目】

1. 山西省自然科学基金面上项目(项目批准号:20210302123136)

2. 重庆市自然科学基金面上项目(项目批准号:cstc2020jcyj-msxmX0002)

3. 山西省自然科学基金青年项目(项目批准号:2015021092)

4. 山西省高等学校科技创新项目(项目批准号:183290224-S)

5. 山西省专利转化计划项目(项目批准号:202304012)

6. 山西省科技合作交流专项项目(项目批准号:202304041101032)

7. 山西省留学人员科技活动择优资助项目(项目批准号:20240007)

8. 山西省回国留学人员科研资助项目(项目批准号:2024-062)

9. 中国博士后科学基金面上项目(项目批准号:2020M673646)

10. 【专利转化项目】ZL201910182023.1、ZL201910181300.7 

发表论文

1. J.-L. Ji, and N. Xiang, “MEMS/NEMS for Biosensing [Guest Editorial],” IEEE Nanotechnology Magazine, vol. 19, no. 1, pp. 3-3, 2025.

2.  X. Chai, Z. Yan, M. Wang, J. Jiang, D. Suo, Y. Liu, J.-L. Ji, S. Sang, High-performance multi-level memristor based on Ag NPs-doped MXene for reliable artificial synapse, Chemical Engineering Journal, 522, 168181, 2025

3. Z. Wang, W. Gao, X. Niu, Y. Liu, Z. Jin, F. Zhang, Z. Cheng, X. Jiang, W. Zhang, T. Wang, J.-L. Ji*, X. Chai,* S Sang*. “Ultra-low LOD H2O2 sensor based on synergistic Nernst potential effect,” DOI:10.1002/advs.202413898, Advanced Science, 2413898, 2025.

4. X. Niu, Z. Wang, M. Wang, J. Yao, X. Chai*, J Ji*, S Sang*; A testable weighting factor for accurate analysis of the organic electrochemical transistors' transient response behavior. J. Appl. Phys., 137 (11): 115501, 2025.

5. J.-L. Ji, J, Xiao, F, Zhang, Z-Q, Wang, T-Y, Zhou, X-R, Niu, W-D, Zhang, S.-B, Sang*, X-J, Chai*, and S, Yan*. “A wearable enzyme sensor enabled by the floating-gate OECT with poly (benzimidazobenzophenanthroline) as the catalytic layer,” Nanobiotechnology, vol. 23, no. 1, pp. 120, 2025.

6. P, Chen, Y, Liu*, X, Chen, F, Zhang, F-Y, Liang, Y-H, Liu, X-J, Chai, X-L, Guo*, and J.-L. Ji*. “Pulse voltage-driven flexible microsystem based on floating gate OECT for fast detection of sodium and potassium ions.” Chemical Engineering Journal, vol. 506, pp.160253, 2025.

7. Z. Li*, P. Ren, F. Zhang, J. Cao, J. Li, X. Chai, J. Ji*, S. Qin, Q. Wang, Peptide-based electrochemical sensor for sensitive detection of amyloid-β oligomer with laccase-mimicking nanozyme assemblies as a signal amplifier, Microchemical Journal, Vol. 214, 114105, 2025.

8. L. Gao, X.-N. Yang, Y.-X. Dong, Y.-J. Han, X.-Y. Zhang, X.-L. Zhou, Y. Liu, F. Liu, J.-S. Fang, J.-L. Ji*, Z.-R. Gao*, and X.-M. Qin*, “The potential therapeutic strategy in combating neurodegenerative diseases: Focusing on natural products,” Pharmacology & Therapeutics, 108751, 2024.

9. H. Li, Z. Jin, X. Jiang, M. An, J.-L. Ji*, and D. Huang*, “Influence of reaction cell electrodes on organic electrochemical transistors,” Applied Physics Letters, vol. 124, no. 9, pp. 093509, 2024.

10. J.-L. Ji, J. Liu, Y. Wang, F. Zhang, M. Zhao, S. Yan, X. Guo, W. Zhang, S.-B. Sang*, X. Chai*, and Q. Sun*, “Liquid-solid heterojunction constructing bio-sensory floating-gate OECTs,” Nano Energy, vol. 128, pp.109962, 2024.

11. X. Chen, J.-L. Ji*, Y. Peng, Z. Gao, M. Zhao, B. Tang*, and Y. Liu*, “Flexible pH sensors based on OECTs with a BTB dye-embedded ion-gel gate dielectric,” Journal of Materials Chemistry C, vol. 11, no. 23, pp. 7722-7731, 2023.

12. Y. Peng, X. Jin, P. Zeng, M. Zhao, Z. Gao*, J.-L. Ji*, X. Li, and W. Chen, “CsPbBr3 QDs Employed as Gate to Fabricate an Artificial Photosynapse,” ACS Applied Electronic Materials, vol. 5, no. 9, pp. 4996-5004, 2023.

13. J.-L. Ji, Z. Wang, F. Zhang, B. Wang, Y. Niu, X. Jiang, Z. Y. Qiao, T. L. Ren, W. Zhang, S. Sang*, Z. Cheng*, and Q. Sun*, “Pulse electrochemical synaptic transistor for supersensitive and ultrafast biosensors,” InfoMat, vol. 5, no. 11, pp.1-15, 2023.

14. Y. Chen, D. Han, D*. Li, H. -T. Wang, X. He, Z. Liu, X. Liu, S.-B. Sang, and J.-L. Ji*, “High-performance nitrogen dioxide gas sensor for ppb-level detection based on GaN nanoshuttles,” Microchemical Journal, vol. 185, pp.108183, 2023.

15. D. Han, Y. Chen, D. Li, J. Shi, H. Wang, X. He, L. Zhao, W. Wang, S.-B. Sang*, and J.-L. Ji*, “Au nanoparticles decorated GaN nanoflowers with enhanced NH3 sensing performance at room temperature,” Sensors and Actuators B: Chemical, vol. 394, pp.134320, 2023.

16. R. Liu, Y.-B. Peng, Q. Huang, X. Yang, Y.-M. Jia*, Y. Du*, and J.-L. Ji*, “Current-Voltage Characteristics of Organic Electrochemical Transistors Considering Effects of Gate Polarization and Adsorbed Charge,” Chinese Journal of Analytical Chemistry, vol. 50, no. 6, pp. 878-888,2022.

17. S.-J. Li, Z.-X. Wang, Y. Niu, B. Wang, S.-B. Sang, W.-D. Zhang, Y. Gao, and J.-L. Ji*, “I-V characteristics and voltage dependence of pH-sensitive organic electrochemical transistors,” Acta Physica Sinica, vol. 71, no. 13, pp.138501, 2022.

18. J.-L. Ji, H. Wang, R. Liu, X. Jiang, Q. Zhang, Y. Peng, S.-B. Sang*, Q. Sun*, and Z. L. Wang*, “Dual-liquid-gated electrochemical transistor and its neuromorphic behaviors,” Nano Energy, vol. 87, pp.106116, 2021.

19. J.-L. Ji, Y. Fu, J. Wang, P.-Y. Chen, D. Han, Q. Zhang, W. Zhang, S.-B. Sang*, X. Yang*, and Z. Cheng*, “Bipolar electrodeposition of organic electrochemical transistor arrays,” Journal of Materials Chemistry C, vol. 8, no. 33, pp. 11499-11507, 2020.

20. J.-L. Ji, J. Wang, L. Wang, Q. Zhang, Q. Duan, S.-B. Sang*, Q. Huang*, S. Li*, W. Zhang, and X. Jiang, “Dynamic-coupling analyses of cells localization by the negative dielectrophoresis,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 235, no. 2, pp. 402-411, 2020.

21. J.-L. Ji, J. Zhang, J. Wang, Q. Huang, X. Jiang, W. Zhang, S.-B. Sang*, X. Guo*, and S. Li*, “Three-dimensional analyses of cells’ positioning on the quadrupole-electrode microfluid chip considering the coupling effect of nDEP, ACEO, and ETF,” Biosensors and Bioelectronics, vol. 165, pp.112398, 2020.

22. Y. Ge, J.-L. Ji*, Q. Zhang, Z. Yuan, R. Wang, W. Zhang, and S.-B. Sang*, “Unraveling the intrinsic magnetic property of triangular zigzag edge bilayer graphene nanoflakes: A first-principles theoretical study,” Chemical Physics Letters, vol. 730, pp. 326-331, 2019.

23. Y. Ge, J.-L. Ji*, Q. Zhang, Z. Yuan, A. Jian, X. Yang, G. Xiao, W. Zhang, and S.-B. Sang*, “Zero-energy-state-oriented tunability of spin polarization in zigzag-edged bowtie-shaped graphene nanoflakes under an electric field,” Nanotechnology, vol. 30, no. 8, pp.085201, 2019.

24. J.-L. Ji, M. Li, Z. Chen, H. Wang, X. Jiang, K. Zhuo, Y. Liu, X. Yang, Z. Gu, S.-B. Sang*, and Y. Shu*, “In situ fabrication of organic electrochemical transistors on a microfluidic chip,” Nano Research, vol. 12, no. 8, pp. 1943-1951, 2019.

25. Y. Liu*, Y. Wu, K. Li, J. Wang, C. Zhang, J.-L. Ji*, and W. Wang, “Amorphous SnS nanosheets/graphene oxide hybrid with efficient dielectric loss to improve the high-frequency electromagnetic wave absorption properties,” Applied Surface Science, vol. 486, pp. 344-353, 2019.

26. J.-L. Ji, Y.-L. Liu, Y. Ge, S.-D. Xie, X. Zhang, S.-B. Sang*, A.-Q. Jian, Q.-Q. Duan, Q. Zhang, and W.-D. Zhang, “Simulation Study on the Controllable Dielectrophoresis Parameters of Graphene,” Chinese Physics Letters, vol. 34, no. 4, pp.046601, 2017.

27. J.-L. Ji, P. Li, S.-B. Sang*, W. Zhang, Z. Zhou, X. Yang, H. Dong, G. Li, and J. Hu, “Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow,” AIP Advances, vol. 4, no. 3, pp.031329, 2014.

28. J.-L. Ji, Z. Zhou*, X. Yang*, W. Zhang*, S.-B. Sang, and P. Li, “One‐Dimensional Nano‐Interconnection Formation,” Small, vol. 9, no. 18, pp. 3014-3029, 2013.

 ……

授权专利

1.  低功耗高可靠性的OECT器件、制备方法、感存算一体化系统及应用,2025.10.01,中国,ZL202510243586.2

2.  低功耗全波段光通信芯片及其制备方法,2024.01.23,中国,ZL202311492026.8

3. 一种基于有机半导体的阻抗流式细胞仪,2023.08.11,中国,ZL202310672809.8

4. 一种多参数跨尺度生化传感器芯片及其使用方法,2023.05.23,中国,         ZL202310244710.8

5. 一种生物传感器及其制作方法,2023.01.10,中国,ZL202011062167.2

6. 一种无标识生物传感器及其制作方法,2023.01.10,中国,ZL202011062164.9

7. 一种基于PEDOT:PSS电化学晶体管的微流控芯片及其制备方法,2021.06.11,中国,ZL201910181300.7

8. 一种高通量、高内涵药物筛选微流控芯片及其制备方法,2021.06.11,中国,ZL201910182823.1

9. 一种基于聚吡咯电化学晶体管的微流控芯片及其制备方法,2021.04.02,中国,ZL201910181299.8

10. 一种高通量微孔板药物筛选芯片及其制备方法,2020.12.22,中国,ZL201910182022.7

11. 一种具有高集成度的自供电压力传感器,2019.07.16,中国,ZL201710266746.0

12. 一种基于压电技术的自供电无线液压用压力传感器,2019.05.21,中国,ZL201710266146.4

13. 基于MEMS技术的无线无源流量传感器,2019.01.04,中国,ZL201610500974.5

14. 用于无标识高内涵药物筛选的微流控芯片及其制作方法,2018.12.28,中国,ZL201710077109.9

15. 一种无线无源煤岩界面识别装置,2018.01.23,中国,ZL201610244796.4

16. 一种用于SOI光波导的侧壁粗糙度检测方法和装置,2017.03.22,中国,ZL201410794625.X

17. 具有纳米枝晶拉曼基底的微流控芯片的制作方法,2016.08.24,中国,ZL201410657689.5

【软著】

1. 电化学防熔断系统软件V1.0,2018SR192699

2. 类突触器件及类脑芯片测试软件V1.0,2021SR2007463

著 作

1. 交流电沉积法及其在微纳器件中的应用,西安电子科技大学出版社,ISBN:978-7-5606-6483-8